Synthesis and Structure of a New High-Pressure Form of $\mathrm{Rh}_{2} \mathbf{O}_{\mathbf{3}}{ }^{*}$

R. D. SHANNON* and C. T. PREWITT \dagger

Received November 3, 1969

Abstract

A new high-pressure form of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ has been prepared at 65 kbar and $1200^{\circ} \mathrm{C}$. Four-probe resistivity measurements made on a single crystal show $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II to be a semiconductor with a room-temperature resistivity of $130 \Omega \mathrm{~cm}$ and an activation energy of 0.16 eV . $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II is orthorhombic with $a=5.1686 \pm 3, b=5.3814 \pm 4, c=7.2426 \pm 4 \AA, Z=4, D_{\text {obsd }}=8.28 \mathrm{gm} / \mathrm{cc}$, $D_{\mathrm{c}}-8.36 \mathrm{gm} / \mathrm{cc}$, and space group, $P b n a$. Although the unit ccll is similar to that of an orthorhombic perovskite, the structure, refined by least squares, is similar to that of corundum in that it contains pairs of RhO_{6} octahedra which share faces. However, only two edges of each octahedra are shared with other octahedra. The structure may also be described as containing layers of the corundum structure cut parallel to (10 T 1), and stacked together to form the $\mathrm{Rh}_{2} \mathrm{O}_{3} \mathrm{II}$ structure.

In the study of the crystal structures of ABO_{3} phases, much attention has been given to criteria for the formation of the corundum and perovskite structures. Recently, Megaw (1) discussed the similarities between the lithium niobate structure, which is directly related to that of corundum, and that of perovskite. In this note, we report a new highpressure phase of rhodium sesquioxide, $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II, which has a unit cell similar to that of orthorhombic perovskite, but a structure related to that of corundum.

In these experiments, finely divided $\mathrm{Rh}_{2} \mathrm{O}_{3}$ produced by heating RhCl_{3} in air at $800^{\circ} \mathrm{C}$ was placed in a Pt capsule and heated at $1200-1500^{\circ} \mathrm{C}$ for 1 hr at 65 kbar and quenched rapidly. Oxygen analysis of the resultant metallic-gray crystals of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II by a catalytic fusion method indicated $19 \% \mathrm{O}$. The calculated oxygen content of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ is 18.9%. Kesistivity measurements using a four-probe technique (2) showed a room-temperature resistivity of $130 \Omega \mathrm{~cm}$ and an activation energy of 0.16 eV .

An X-ray diffraction pattern taken using a HäggGuinier camera with a KCl internal standard is

[^0]given in Table I. The unit cell dimensions, refined by a least-squares technique, are $a=5.1686 \pm 3$; $b=5.3814 \pm 4$; and $c=7.2426 \pm 4 \AA$. The calculated density, $8.36 \mathrm{gm} / \mathrm{cc}$, compares reasonably well to the measured density, $8.28 \mathrm{gm} / \mathrm{cc}$. Comparison of the unit cell volume of $201.45 \AA^{3}$ for 4 -formula units to $208.03 \AA^{3}$ for ambient-pressure, lowtemperature rhombohedral $\mathrm{Rh}_{2} \mathrm{O}_{3}$ (3) and 205.56 \AA^{3} for the ambient-pressure, high-temperature, orthorhombic $\mathrm{Rh}_{2} \mathrm{O}_{3}$ reported by Wold et al. (3), indicates percentage volume changes $\Delta V / V_{1}$ of 3.2% and 2.0%, respectively. The space group determined by precession photographs of a single crystal was found to be Pbna- $\dot{D}_{2 h}^{14}$, in contrast to the space group $P b n m-D_{2 h}^{16}$ found for the orthorhombic perovskite $\mathrm{GdFeO}_{3}(4,5)$.

Reid and Ringwood (6) recently predicted the existence of a perovskite-type $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at pressures of $600-1200 \mathrm{kbar}$ in shock wave experiments by McQueen and Marsh (7). Reid and Ringwood based their conclusion on an extrapolated zero-pressure density of $5.96 \mathrm{gm} / \mathrm{cm}^{3}$, which is 14% higher than that of $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$ (hematite). We originally thought that the $\mathrm{Rh}_{2} \mathrm{O}_{3}$ system might be analogous to the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ system since both $\mathrm{Rh}_{2} \mathrm{O}_{3} \mathrm{I}$ and hematite have the corundum structure and the high-pressure phases appeared to have the orthorhombic perovskite structure. However, we were suspicious of the large difference between the density changes in the

TABLE I
Powder Diffraction Pattern of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II

Index	$d_{\text {obsd }}$	$d_{\text {calcd }}$	$I_{\text {obsd }}$
002	3.621	3.621	20
111	3.314	3.314	30
020	2.691	2.691	70
112	2.598	2.597	100
200	2.584	2.584	70
021	2.521	2.522	5
210	2.330	2.330	5
121	2.266	2.267	5
103	2.187	2.187	5
022	2.161	2.160	2
202	2.103	2.104	5
113	2.027	2.027	5
122	1.990	1.993	2
220	1.864	1.864	80
004	1.811	1.811	30
221	1.805	1.805	10
023	1.797	1.797	5
222	1.657	1.657	10
131	1.650	1.650	40
114	1.629	1.629	30
311	1.600	1.600	5
132	1.535	1.534	60
024	1.502	1.502	20
312	1.494	1.495	80
204	1.483	1.483	30
223	1.475	1.475	10
133	1.387	1.387	5
115	1.350	1.350	2
040	1.345	1.345	5
041	1.322	1.323	5
224	1.299	1.299	25
400	1.292	1.292	10

two systems. Using criteria established by Shannon and Prewitt (8) relating density changes with changes in coordination, it appeared that $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II should contain Rh in six-coordination, whereas the highpressure $\mathrm{Fe}_{2} \mathrm{O}_{3}$ probably contains Fe in greater than six-coordination.

To resolve this problem, the crystal structure of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II was solved using observed structure factors obtained with a Picker single-crystal diffractometer, $\mathrm{MoK} \alpha$ X-rays, and a spherically ground $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II crystal of $0.008-\mathrm{cm}$ radius. Fullmatrix least-squares refinement resulted in a discrepancy index $R\left(R=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{0}\right|\right)$ of 0.042 . The final atom parameters and interatomic distances are given in Table II.

The $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II structure is related to that of corundum in that it contains pairs of RhO_{6} octahedra which share faces. However, each octahedron

TABLE II
Final Atom Parameters and Interatomic Distances for $\mathrm{Rh}_{2} \mathrm{O}_{3} \mathrm{II}^{a}$

	x	y	z	B
Rh	0.7498(1)	0.0312(2)	$0.1058(1)$	0.15(4)
O(1)	$0.6037(11)$	$0.1161(10)$	0.8494(8)	0.08(8)
0 (2)	$0.0505(16)$	$\frac{1}{4}$	0	0.14(12)
	Rh-0(1,1) 00 I		$2.055 \AA$	
	-O(1,3) 0 Ī0		2.076	
	-0(1,4) 000		2.068	
	- $0(1,5) 010$		2.017	
	$-0(2,1) 100$		2.094	
	$-0(2,5) 0 \overline{1} 0$		1.985	
	Rh O(av.)		2.050	
	-0(1,5) 1110		3.449	
	$-0(1,6) 100$		3.171	
	-0(1,8) 0 (11		3.431	
	$-0(2,5) 0 \overline{\mathrm{I}} 0$		3.255	

[^1]shares only two edges with other octahedra rather than three as in corundum. In fact, the structure may be thought of as containing slabs of the corundum structure cut parallel to ($10 \overline{1} 1$) which, incidentally, is the most common twinning plane of corundum crystals. These slabs stacked together form the $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II structure. Figure 1 a and b are schematic representations showing the relation between the two structures. Figure la is the $\mathrm{Rh}_{2} \mathrm{O}_{3} \mathrm{II}$ structure projected down the a axis. Two unit cells are shown here with only the bonds from the rhodium atoms (small circles) to the oxygen atoms in the shared octahedral face drawn in. The dashed lines from the rhodium atom in the left center of the figure indicate the other three oxygen atoms required to complete the octahedron. The dark motifs represent $\mathrm{Rh}_{2} \mathrm{O}_{3}$ units centered around $x=\frac{1}{2}$, and the light ones $x=0$. Figure 1 b shows $\mathrm{Rh}_{2} \mathrm{O}_{3}$ with the corundum structure drawn to emphasize the similar aspects of the two structures. The drawing is projected down the hexagonal a and the direction of the hexagonal c is indicated by the $\mathrm{Rh}-\mathrm{Rh}$ vector

Fig. 1. (a) The $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II structure projected along the a axis. The small circles are rhodium atoms and the dark motifs are centered around $x=\frac{1}{2}$ and the light ones around $\boldsymbol{x}-\mathbf{0}$.
(b) The $\mathrm{Rh}_{2} \mathrm{O}_{3}$ I structure (corundum) projected along the hexagonal a. The hexagonal c is defined by the vector between rhodium pairs sharing a common oclahedral face.
across the shared octahedral faces. In both figures the columns on the left and right of each drawing are essentially identical. The center columns are related by a twofold axis at $\frac{1}{4}, y, \frac{1}{2}$ in Fig. 1a. That is, if this operation is applied to the center column of the structure in Fig. 1a, the structure in Fig. 1 b will result. Note that five of the six oxygen
atoms coordinating Rh remain the same, but the sixth is different. This causes the greater distortion of the octahedra in the corundum-type structure.
The average $\mathrm{Rh}-\mathrm{O}$ distance predicted for sixcoordinated Rh^{3+} using effective ionic radii (9) is $2.045 \AA$. From Table II the observed average is seen to be $2.050 \AA$. The $\mathrm{Rh}-\mathrm{Rh}$ distance is $2.80 \AA$, somewhat shorter than the $2.90 \AA$ predicted for $\mathrm{Rh}_{2} \mathrm{O}_{3} \mathrm{I}$ by Prewitt, Shannon, Rogers, and Sleight (10).

Summary and Conclusions

A new form of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ has been synthesized which has a structure similar to that of corundum but a diffraction pattern much like that of orthorhombic perovskite. Although the new structure is denser than the $\mathrm{Rh}_{2} \mathrm{O}_{3}$ corundum structure, the oxygen atoms are not obviously more perfectly close packed than in the corundum structure although the RhO_{6} octahedra are less distorted.

It is possible that ilmenite and lithium niobate equivalents of the $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II structure will be found and that possibly some other phases previously thought to be orthorhombic perovskite actually have this structure.

Acknowledgment

The authors are indebted to Mr. E. P. Moore for grinding single crystal spheres of $\mathrm{Rh}_{2} \mathrm{O}_{3}$ II and for supervising most of the X-ray diffraction work. Mr. C. L. Hoover performed the high-pressure synthesis experiments and Mr. J. L. Gillson, the electrical resistivity measurements.

References

1. H. D. Megaw, Acta Cryst. A24, 583 (1968).
2. T. A. Bither, J. L. Gillson, and H. S. Young, Inorg. Chem. 5, 1559 (1966).
3. A. Wold, R. J. Arnott, and W. J. Croft, Inorg. Chem. 2, 972 (1963).
4. S. Geller, J. Chem. Phys. 24, 1236 (1956).
5. P. Coppens and M. Eibschütz, Acta Cryst. 19, 524 (1965).
6. A. F. Reid and A. E. Ringwood, J. Geophys. Res. 74, 3238 (1969).
7. R. G. McQueen and S. P. Marsh, in "Handbook of Physical Constants," pp. 153-159 (S. P. Clark, Ed.), Memoir 97 of the Geological Society of America, Inc. Revised Edition, 1966.
8. R. D. Shannon and C. T. Prewitt, Mater. Res. Bull. 4, 57 (1969).
9. R. D. Shannon and C. T. Prewitt, Acta Cryst. B25, 925 (1969).
10. C. T. Prewitt, R. D. Shannon, D. B. Rogers, and A. W. Sleight, Inorg. Chem. 8, 1985 (1969).

[^0]: * Contribution No. 1620 from the Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware, 19898.
 \dagger Present Address: Department of Earth and Space Sciences, State University of New York, Stony Brook, New York, 11790.

[^1]: ${ }^{a}$ The second number within the parentheses for each oxygen atom indicates the symmetry transformation applied to the coordinates of this atom. The numbers, $p q r$, just to the right of the parentheses are the translations applied to the transformed coordinates. For example, $0(2,5) 0 \overline{1} 0$ means that symmetry transformation 5 was applied to $0(2)$ and then -1 was subtracted from the transformed y coordinate. The symmetry transformations are $x y z ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \frac{1}{2}-x, \bar{y}, \frac{1}{2}-z ; x, \frac{1}{2}-y, z ;$ $\bar{x}, \bar{y}, \bar{z} ;-\frac{1}{2}+x,-\frac{1}{2} \cdots y,-\frac{1}{2}+z ;-\frac{1}{2}+x, y, \cdots \frac{1}{2} \cdots z ; \bar{x}$, $-\frac{1}{2}+y, z$.

